Results of the Luling, Louisiana Wetland Carbon Credit Pilot Project

Sarah K. Mack, PhD, CFM
Robert R. Lane, PhD
John W. Day, PhD
Steve D. Tullos
L.J. Brady
Dick Kempka

Tierra Resources

- Mission: To conserve, protect, and restore coastal wetland ecosystems by creating innovative solutions that support investment into blue carbon
- About Us: Founded in 2007. Recognized innovator and quality leader in the research, development, and monetization of blue carbon.
- Tierra International Foundation: 501(c)(3) Founded in 2016

Outline

- Background on the Luling Pilot Project
- Applying the carbon methodology
- Monitoring
- Carbon Results
- Challenges
- Looking to the future

First Wetland Carbon Pilot!

Why We Liked This Project?

- Clear goal of transacting carbon from the onset of the project.
- Demonstration of a financial need.
- Beautiful successful assimilation system
- Private and secure system started in 2006.
- Great partners.
- Some monitoring already exists.
- Low cost carbon pilot project

Goals

- Apply the ACR methodology
- Determine cost-saving measures
- Produce commercially viable carbon credits
- Compensate landowner for the use of their land without additional cost to parish or citizens
- Demonstrate public-private partnerships that leverage carbon finance
- Prove the commercial viability of wetland carbon credits

Restoration of Degraded Deltaic Wetlands of the Mississippi Delta

Sarah K. Mack, PhD, CFM Robert R. Lane, PhD John W. Day, PhD

2012

Individual Modules Are Applied Under the Framework Module

Key Equation

Carbon Offset = Project Cseq - Baseline Cseq

Carbon Offset =
$$C_{ACR,t} = (\Delta C_{ACTUAL} - \Delta C_{BSL}) * (1-LK) * (1-UNC)$$

Baseline Scenario

Baseline Scenarios

Conservative baseline scenario:

- Uses the degraded carbon sequestration rate determined prior to Start Date or that would have occurred in the absence of the project activity
- Constant wetland project area in baseline

Projected wetland loss scenario:

– Uses the degraded carbon sequestration rate determined just prior to Start Date or that would have occurred in the absence of the project activity, and also incorporates a projected reduction of total wetland project area due to wetland loss that would occur over a 40-year Crediting Period if no activity were to take place.

Project Scenario

Monitoring Regime

Stratification, Tree Biomass, Soil Cs, Accretion, and GHGs

Luling Summary

Parameter	Baseline	Project	Net Cseq	Baseline	Project	Net Cseq
	t CO2-e/yr	t CO2-e/yr	t CO2-e/yr	t CO2-e/40yr	t CO2-e/40yr	t CO2-e/40yr
DC TREE	1,842.4	7,233.1		73,696.8	289,325.9	
D c _{soc}	2,573.7	7,342.2		102,949.1	293,687.9	
D GHG _E	56,762.8	31,303.0		2,270,510.1	1,252,118.1	
Net w/GHG _s	-52,346.6	-16,727.6	35,619.0	-2,093,864.2	-669,104.2	1,424,760.0
Net no GHG _s	4,416.1	14,575.3	10,159.2	176,645.8	583,013.9	406,368.0

- 1.5 years of monitoring
- PDD developed
- Project start date 2008
- Pre-verification review

Challenges

- Additionality
 - Project not required by law
 - Least-cost scenario
- Variability in GHG emissions
 - Holm et al. 2016 omit GHG's?
 - Radiative forcing time intervals
 - Decay of methane over time
- Monitoring costs
- Opportunity costs

Looking to the Future!

- 2017 publication(s)
- We still have buyers expressing interest!
- Other value streams?
- Quantifying co-benefits
- Water quality
 - Nutrient credits
- Adaptation
 - Wave attenuation
 - Sea level rise
 - Salt water intrusion
 - Disturbance regulation

Final Conclusions

- Growing recognition of wetlands role in climate change mitigation and adaptation
- Private sector more present than ever!
- 1000 companies call for a price on carbon
 - –Set "Science-Based Targets"
 - -Seek to "inset" their supply chain
- International Civil Aviation Organization (ICAO) passed resolution to establish a Global Market-based Measure in 2021

If you want to go fast, go alone. If you want to go far, go together.

Thank You!

Co- Authors

- Robert R. Lane, PhD
- John W. Day, PhD

St Charles Parish

- L.J. Brady
- Shawn Stinnett

Entergy Corporation

- Steve Tullos
- Chuck Barlow

Comite Resources

- Jason Day
- Joel Mancuso

sarahmack@tierraresourcesllc.com

